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Abstract

Four approaches to the analytical solution of the three-dimensional problem of the theory of elasticity for slabs and plates are
given. All the proposed schemes have a common basis. It is proved that the asymptotic method is identical with the method of
hypotheses and the method of successive approximations.
© 2006 Elsevier Ltd. All rights reserved.

Among the numerous ways of constructing models of the deformation of slabs, plates and binding layers we
distinguish four analytical methods: the asymptotic method, the power-series method, the method of hypotheses and
the method of successive approximations. When solving the equations of the theory of elasticity these methods are
usually applied using non-identical algorithms, and hence the models constructed lead to results which sometimes
differ considerably.

Below we propose an algorithm of asymptotic integration, which may form a basis for constructing the method of
hypotheses and the method of successive approximations. The solutions of the problem of the theory of elasticity is
presented in the form of the sum of two components and is determined by two independent recurrence processes. As
a result, the components of the displacement vector and the stress tensor can be expanded in power series, which have
the same order for any approximation for all the required quantities.

1. Formulation of the problem

We will consider the equations of the theory of elasticity in Cartesian coordinates x, y, z. We will represent the
system of resolvents as follows:

0,6,+09,T,,+9,T,, = 0 (x,,2) (1.1)
1 \Y v
ou = Exox—E—"yy y—f"zzcz (u, v, w; x, Y, 2) (1.2)
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Gylo,v+d,ul = 1, (4, v, w; x,,2) (1.3)

Relations (1.1) are the equations of equilibrium of an infinitesimal element, and (1.2) and (1.3) are Hooke’s law, in
which the strains are expressed in terms of the components of the displacement using the Cauchy relations. Here o,
Txy =Tyx (%, ¥, 2) are the components of the stress tensor, u, v, w are the components of the displacement vector of an
arbitrary point, Gy, = Gyx (x, y, z) are the shear moduli of the material and dx = 0/0x (x, y, z). The moduli of elasticity
and Poisson’s ratios are related by the expression vy Ey = vy Ey (x, Y, 2).

Suppose the origin of the system of coordinates lies in the middle plane of the slab, and the z axis is perpendicular to
this plane. Assuming that the slab has constant thickness 2 &, henceforth, when necessary, we will use the dimensionless
coordinate ¢ =z/h.

2. An algorithm for the asymptotic integration of the equations of the theory of elasticity

We will mean by the asymptotic method of solving the problem of the theory of elasticity the expansion of the
stress-strain state in series in a small parameter. We will use half the thickness of the slab / as this parameter.

The main problem of the asymptotic method is to choose the form of the asymptotic series. When solving the system
of equations of the theory of elasticity this problem can be solved in different ways.'~> We will propose the following
version here. We will assume that the stress-strain state of the slab has two components, which we will henceforth
denote by superscripts 1 and 2. We will represent the solution of Egs. (1.1)—(1.3) in the form

2
u=u+u? (u,v,w); ©, = c(l)+c5(2) Ty = Til) ( ) (x,5,2) 2.1

We define the quantities uV, vV, .., r§,lz) and u®, v?, .. T;%) by two independent recurrence processes, which
begin with the expansion of the parameters of the stress-strain state of the slab in asymptotic series. We will take the
following expressions for the components of the displacement vector and the stress tensor of the first component

) = Zhsglui (u, v), wh) = Z“hs_zwx1
s s

2.2)
(1) (1) 3 D 2 s
zh il (x’ Ys Z)’ Txy Zhs iyl’ xz Zhs ;zl ('x’ y)
We will represent the quantities U@ @ tﬁ), which define the second component of the stress state, in the form
L. Zhs zu; (u, v), w? = Zhsv 1w;
) s
2.3)

2 2 -2 2
) zh Sl (63, 2), o = zhb T T = Zh T (X,Y)

In series (2.2) and (2.3) and everywhere henceforth Zs denotes summation over the index s, which takes values of 1,
3,...,2n—1, where n is the number of the asymptotic approximation.

According to the chosen form of the asymptotic series, the overall solution (2.1) contains the zeroth and all positive
powers of the parameter h. As h— 0 the components of the displacement vector and the stress tensor will have
a singularity O(h~!). The latter is obvious for all the required quantities apart from the shear stress Tyy, since the
expression for r(l) contains the term 42 y . It will follow from the algorithm henceforth that 7! w1 =L The shear
stresses Ty will therefore have the same singularity as all the other unknowns.

Since the procedure for constructing the recurrence processes for calculating uj, u3, . . ., 'C;Z 1 t;d has been described

in detail earlier,’"> we will only write the result here. We will calculate the required quantities in series (2.2) from the
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formulae

g
s ~1
U, = Pi+_[(zeTizl —wai)dg (x,y; u, v)
0

S s—-2
o v v
K s zl x s-2 7y S-2
wp = fZ+J - =0, — 70y |d¢S
\E. E E,

E V. +V, V
s X s N xZ yz'xy S .
X1 = Ty v (axu, +V,,0,U; + g O'Z]) (%, y; u, )
Xy " yx Z

Q
|

S
s s s s s s—2
1 = pz_J(axszl +aytyzl)dg’ Txyl = nyY

0 (2.4)

S
Tizl fi - J.(nyay'ys—z + axcil_z)dg (x,y)
0

Ys‘z = axvi_2+8yui_2, s=1,3,..,2n-1

The functions f}, ys . f; and py, py, p; of the arguments x, y, which occur in the integrations, are arbitrary. The
quantities with negative superscripts in formulae (2.4) must be put equal to zero.
The required quantities u3, v3, .. ., rizz of the second components are found in the form

S

-1 _s5-2 )

uy = g+ [(G Ty =3,y )dg (x,y: u, v)
0

S s
(o) v A%
K K z2 xS 2y oS
Wy = ¢1z+J. — =7 0x— 70y (dS
! E, E, Ey

E

s X
On = 1-v
Xy yz

VXZ + V ZVX S
———E—y———“yozz (x,y; u, V)

A S
(axuz + vxyayv2 +
Zz

2.5)

S
s s s-2 s-2 s s s
0, = gz—j(axrm +8yry22 )dg, Ty, = ny(ayu2+8xvz)
0

S
TizZ = qi - J(axciZ + aytiyZ)dg (x, )’)
0

s=1,3...,2n-1

The functions g}, gy, &: and gy, ¢y, ¢; of the arguments x and y, which occur in the integration, are arbitrary.

When constructing the model of the strain, the functions that occur in the integration in both the first and second
recurrence processes must be determined while satisfying the conditions on the boundary of the slab. The first and
subsequent approximations introduce twelve arbitrary functions f, ..., g} into the overall solution (2.1). Hence, in the
approximation with number n, we will have 12n functions of the coordinates x and y to satisfy the boundary conditions.
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3. An explicit form of the solution from the asymptotic algorithm

The algorithm requires the successive calculation of all the parameters of the stress-strain state in the first, second and
subsequent approximations. An analysis of formulae (2.2)—(2.5) enables this procedure to be simplified considerably.
For brevity all the calculations will henceforth be carried out solely for an isotropic slab with a modulus of elasticity
E, aPoisson’s ratio v and a shear modulus G = E/[2(1 + v)]. It is easy to see that in formulae (2.2) in each approximation
all the quantities are defined using 7° ;zl and wf. Hence, we can represent them by simple transformations as

xz1>
follows (the integration over z everywhere henceforth is carried out in the limits from O to z):

2 2
Tyt = T +_[ij1(sz1’ Tyor» Wi )dz* (x,y)
Wi = ikl 4 [R50 10 wh T de (v, y)
Here we have used the following notation

-2 1 2 s-2 E 2 s-2 E 2 52 \% -2
T =’_1(Gaypi +:53xpi +maxyp; +T—_—\;3xl7§ )(x,y)

1-v * xz1

~2V—-22 2 ~2.s-2 1 2 2 2 2
Rt = (Y20l - 0l + ol wit e A ) (x)

2 Ifl-v-2V? =2,
T;l = ;lI: E(1-V) pP; (axpx +aypy ):l

2 2 2 1T+v s-2 -2 V o2 s-2
zl(rle’T;zl’W; ) =h [E(V )(8 szl +8y‘c;Z1)+mV Wi }

The relations obtained enable us to write expressions for the shear stresses and the bending in explicit form
(1 2 k_k i
1 5 -
) Zh‘ ZAS F @y, W =YY Attt 3.1
s =

The expansion coefficients Af;k, A;}k, A?k are expressed in terms of arbitrary functions as follows:

A= fe A =Ty, AT =LAl =T
s,k 1 s-2,k-2 —2,k2 s2k2

A = R LA, ) (x,9)

sk 1 2,k-2 -2,k-2 -2,k-2

A= R T AT AT

k=273 ..,5s-1;, s=13,...,2n-1

Quantities with negative superscripts must be put equal to zero.

In the system of equations of the theory of elasticity, the first two equations of (1.1) and the third of equations
(1.2) are approximately satisfied by algorithm (2.2), (2.4). The remaining six equations are exactly satisfied. Hence,
for the known expressions (3.1) for the shear stresses and the bending, from these six equations we can determine the
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remaining unknown quantities. As a result we obtain

uV = Px )+ [(G5 -0, )z (w5 x,7)

m_ _E ! ! Y U
o, = I—VZ(axu‘ P+va, o)+ 0 (v xy) -2

x'xz y¥yz xy

o‘il) P, (x,y)- J(B D4+ 1D)dz, ) = G(ayu(1)+8xv(1))
Here we have put

_ s—-1_s
= Zh Py (%,5,2) (3.3)

Hence, all the parameters of the first component of the stress-strain state can be calculated in terms of the shear
stresses and bending of the slab. Hence, the algorithm for calculating these components can be conventionally called
the problem of the shear and bending of a slab.

Similar transformations can be carried out for the second component. In algorithm (2.5) we will represent the
expressions for u3, v3, o}, in the form

s -2 s—-2 _s-2 _s-2 2
= gx + Z]jz —JIsz(MZ N 1)2 , 622 )dZ (u, V; X, y)
s K -2 s—2 s-2 _5s-2 2
O, = gz“ZT::Z +J.JR12(L£2 » Uy 5,0, )dz
Here we have put

-2 1, 1 5s-2 s-2 5 — 5— s -
Tt = 56770, oy, T = 20,4 40,47

s-2 s-2 _s-2 —22 V2 5-2 2s2 1 2 572, 1+v 2
RXZ(MZ ’v; ’022 ) = (_a 2 +a maxyvz E(l V)aXG;Z )

(u, v; x,y)

_ 1 E _ _ v _
o 2057 = [ s () ]

These formulae enable us to write an explicit expression for the tangential displacements and the compression
stresses. We have

s-1 s—1

-2 Lk _k - s
"= YE Y B wvixy), o = THTPY B (3.4)
s =0

s k=0
Here we have used the following notation

,0 , 1 -2 , 0 L1 -2
B} =g, B, =Tiz (x,y), B, =g, By =-T,

X X2 X z z Z
s, k 1 s-2,k-2 os-2k-2 ,5-2,k-2

Bk = B , 5

x k(k 1) 12( 7By ’BZ )(xsy)
s,k _ 1 s-2,k=2 ps—2,k=2 ps—-2k-2

B, = k(k—1) R.2(B, » B, » B, )

k=273 ..,5s-1;, s=13,..2n-1

The quantities with negative superscripts must be put equal to zero.
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The second and third equations of (1.3) and the third of the equations (1.1) are approximately satisfied by algorithm
(2.3),(2.5). The remaining six equations of the theory of elasticity are satisfied exactly. Hence, for the known expressions
(3.4), from these six equations we can determine the remaining unknown quantities. As a result we obtain

o)) E @ 2) V_ @ .
c,” = . _Vz(axu + Vayl) )+ mcz (u, v; x,y)
2 2 2 2 2 2
@ = 6Eu?+3,0?), 1@ =0, y)—f(axoi '+3,10)dz (x, y) 3.5)

2 1 2 2 2
w? = Q,(x,y)+ E,J.[Gi )—v(ci )+6§ ))]dz

Here we have put

0,=Yr g, (x,y,2 3.6)

In the second component all the parameters of the stress-strain state can be calculated in terms of the tangential
displacements and the compression stress. Hence, the process of determining this component can be conditionally
called problem of extension compression in three directions.

4. The asymptotic algorithm and the power-series method

In the power-series method the solution of the system of equations (1.1)—(1.3) is expanded in power series with
respect to the coordinate z. Previous calculations show that this method is close to the asymptotic integration method.
However, when certain conditions are satisfied these methods become identical. We will write expressions (2.1) using
relations (3.1)—(3.6). As a result we obtain the following representation of the parameters of the stress-strain state

m

m m
k k k
u= Y (Y, v= Y RN, .., T, = 3 Tz 4.1)
k=0 k=0 k=0

The expansion coefficients uy, v,. .. Ty in these series will be expressed in terms of the functions f7, ‘yV, .. q

Relations (4.1) show that the asymptotic algorithm can be regarded as a method of calculating the expansion
coefficients in the power-series method. The series obtained in the general case will contain the zeroth and all positive
powers of the coordinate z. The maximum power m in expansions (4.1) will be the same for all the components of
the displacements and stresses: in the first approximation m =1, in the second m =3, and for the approximation with
number n the maximum exponent m=2n — 1.

5. The asymptotic algorithm and the method of hypotheses

The basis of the method of hypotheses is certain assumptions regarding the nature of the stress-strain state, which,
using Egs. (1.1)—(1.3), later lead to one or other models of the theory of plates and shells. The equations of the theory
of elasticity enable us to realize this method in different forms.*>

An analysis of the transformations of the system of equations (1.1)—(1.3) for asymptotic integration enables us to
propose the following version of the method of hypotheses. The solution of the equations of the theory of elasticity, as
before, will be constructed using formulae (2.1). To determine the first component in the n-th approximation we will
specify the expressions of the shear stresses and bending in the form

2n-2 2n-2
k k
Ty = > Fi(x,y)2" (x,y), w' = > Fi(x,y)z (5.1
k=0 k=0

The remaining required quantities are found from formulae (3.2).
We will compare the coefficients of like powers of the coordinate z in series (3.1) and (5.1). For these series to
be identical it is necessary that the arbitrary functions of the method of hypotheses should be expressed in terms of
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arbitrary functions of the asymptotic method using the following formulae

2n-2
Y orTArY, k=0,2,.,20-2 (xy,2)

X

s=kk+2,...
Fy = § (5.2)

x 2n-3
2,k
S KA, k=1,3,..,2n-3(x,y2)
s=kk+2, ...

When these relations are satisfied the shear stresses t)(clz), t§lz) and the bending w1, calculated by the method of
hypotheses and from the asymptotic expansion, will be identically equal. For the remaining parameters of the first
component of the stress-strain state to be equal formulae (3.3) must be satisfied.

When determining the second component of the stress-strain state of the slab, the following algorithm is used to
realize the method of hypotheses. We initially specify the expressions of the tangential displacements and normal
compression stresses

2n-2 2n-2

k
Y G (vixy), o = ¥ Gix y)7 (5.3)
k=0 k=0

Comparing series (3.4) and (5.3) we conclude that the tangential displacements and the compression stresses in the
methods considered will be identical when conditions identical to conditions (5.2) are satisfied with F and A replaced
by G and B.

The remaining unknowns are determined from relations (3.5). For these to be identical in both methods, formulae
(3.6) must be satisfied.

Hence, in the version of the method of hypotheses proposed for constructing the approximation with number 7, as in
the asymptotic algorithm we have 12n arbitrary functions F )’f, Gﬂ‘c, Py, Oy, ..., Q;. In any approximation, the forms
of the power series are completely identical and when the above-mentioned conditions are satisfied, both methods lead
to the same strain models.

6. The asymptotic algorithm and the method of successive approximations

The algorithms derived can be realized in the form of the method of successive approximations. When constructing
series (3.1) to calculate the first component in the zeroth approximation we will assume that the normal stresses
a)((]), ay), agl) and the shear stresses tg,) are equal to zero. Then, from the first two equations of (1.1) and the third
equation of (1.2) we obtain in the first approximation

) = @y, T = @y, WY = @lxy)

The remaining unknowns are calculated from formulae (3.2). We will denote the functions of the x and y coordinates
which occur in the integration by | ;, H;, I1 ; The calculation of the second approximation begins with the integration
of the first two equations of (1.1) and the third equation of (1.2). From these we obtain t)(clz’z), t;]z’z), w12 We then

use formulae (3.2) and as a result new functions Hi Hi Hg etc. appear. Hence, the transfer from one approximation
to another is made by means of three relations

w0 = - [0,0" V43,1 T dz (v y)

yxy
(1,k) 1 (1,k-1) (1,k-1) (1,k—1)

w = @, +EJ[6Z -Vv(o, +0, )1dz

k=12 ...n

We will determine the second component of the stress-strain state by assuming that, in the zeroth approximation,

there are no shear stresses ‘L')(C%), ‘C(Z) or bending w® in the slab. Then, from the last two equations of (1.3) and the last
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equation of (1.1) we obtain, in the first approximation, expressions for the tangential displacements and compression
stresses

2,1 2,1
u( ) (2,1)

=Thxy), o2V =Ty

z =

= Ty(xy), v

Relations (3.5) enable us to calculate the remaining unknowns. We will denote the arbitrary functions of the coordinates
of the middle plane which then appear by K }C K ; K Zl We transfer to the second approximation by means of the last

two equations of (1.3) and the last equation of (1.1). When calculating u2 2.2, 022,2) we use relations (3.5), and
functions K)%, K %, K ? etc. appear. We transfer to the next approximation by means of the formulae

X

W9 = T 6% 9™ * Ddz (u, s x, )

oPh = F’;—j(a LA I A /4

Z X "Xz yyz

k=12 ...,n

Summing the results of the two processes, we obtain the solution of the system of equations of the theory of elasticity
in the form (4.1), where the coefficients uy, v,. . ., Ty in approximation with number n will be expressed by means of
12n arbitrary functions cbﬁ, H’;, I’f, K’;, CD’;,, e K’Z‘.

Comparing this algorithm with the algorithm of the asymptotic method, we find that these two methods are inter-
connected. The results will be identical if the following relations are satisfied in the approximation with number n

of = T T Y mh= Bl K= TN oo
N s s S

k=1,2,...,2n-1

Here le‘ denotes summation with respect to the index s, which takes values of 1, 3, ...,2k — 1.
Hence, the algorithm of the method of successive approximations corresponds completely to the asymptotic algo-
rithm.

7. Classification of the models of the strain of an elastic layer

The theoretical models of the strain of plates and slabs, of load-carrying binding layers in three-layer plates and of
adhesive compounds result from the algorithms constructed for a specific choice of the form of the arbitrary functions.
We have shown here that the different methods of solving the problem of the theory of elasticity lead to the same power
series for all the components of the stress-strain state. This enables us to introduce a non-contradictory classification
of the strain models, the basis of which is the maximum power of the coordinate z in series (4.1).

The calculation schemes which follow exactly from the structure of the first asymptotic approximation will be called
models of the first approximation. It was proved in Ref. 6 that the Kirchhoff model is a scheme of the first approximation.
The model for calculating the binding layers in multilayered structures’ also belongs to the first approximation.

The calculation schemes of the second approximation must contain polynomials with a highest power with respect
to the z coordinate of three. These include the model of the strain of orthotropic plates, in which the interlayer shear
is given by a quadratic parabolic law with respect to the thickness,? the model of the strain of a filler in three-layer
structures® and many other models.
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